Telegram Group & Telegram Channel
💠 Compositional Learning Journal Club

Join us this week for an in-depth discussion on Data Unlearning in Deep generative models in the context of cutting-edge generative models. We will explore recent breakthroughs and challenges, focusing on how these models handle unlearning tasks and where improvements can be made.

This Week's Presentation:

🔹 Title: Data Unlearning in Diffusion Models


🔸 Presenter: Aryan Komaei

🌀 Abstract:
Diffusion models have been shown to memorize and reproduce training data, raising legal and ethical concerns regarding data privacy and copyright compliance. While retraining these models from scratch to remove specific data is computationally costly, existing unlearning methods often rely on strong assumptions or exhibit instability. To address these limitations, we introduce a new family of loss functions called Subtracted Importance Sampled Scores (SISS). SISS leverages importance sampling to provide the first method for data unlearning in diffusion models with theoretical guarantees.

Session Details:
- 📅 Date: Tuesday
- 🕒 Time: 4:45 - 5:45 PM
- 🌐 Location: Online at vc.sharif.edu/ch/rohban

We look forward to your participation! ✌️



tg-me.com/RIMLLab/196
Create:
Last Update:

💠 Compositional Learning Journal Club

Join us this week for an in-depth discussion on Data Unlearning in Deep generative models in the context of cutting-edge generative models. We will explore recent breakthroughs and challenges, focusing on how these models handle unlearning tasks and where improvements can be made.

This Week's Presentation:

🔹 Title: Data Unlearning in Diffusion Models


🔸 Presenter: Aryan Komaei

🌀 Abstract:
Diffusion models have been shown to memorize and reproduce training data, raising legal and ethical concerns regarding data privacy and copyright compliance. While retraining these models from scratch to remove specific data is computationally costly, existing unlearning methods often rely on strong assumptions or exhibit instability. To address these limitations, we introduce a new family of loss functions called Subtracted Importance Sampled Scores (SISS). SISS leverages importance sampling to provide the first method for data unlearning in diffusion models with theoretical guarantees.

Session Details:
- 📅 Date: Tuesday
- 🕒 Time: 4:45 - 5:45 PM
- 🌐 Location: Online at vc.sharif.edu/ch/rohban

We look forward to your participation! ✌️

BY RIML Lab




Share with your friend now:
tg-me.com/RIMLLab/196

View MORE
Open in Telegram


RIML Lab Telegram | DID YOU KNOW?

Date: |

The S&P 500 slumped 1.8% on Monday and Tuesday, thanks to China Evergrande, the Chinese property company that looks like it is ready to default on its more-than $300 billion in debt. Cries of the next Lehman Brothers—or maybe the next Silverado?—echoed through the canyons of Wall Street as investors prepared for the worst.

Find Channels On Telegram?

Telegram is an aspiring new messaging app that’s taking the world by storm. The app is free, fast, and claims to be one of the safest messengers around. It allows people to connect easily, without any boundaries.You can use channels on Telegram, which are similar to Facebook pages. If you’re wondering how to find channels on Telegram, you’re in the right place. Keep reading and you’ll find out how. Also, you’ll learn more about channels, creating channels yourself, and the difference between private and public Telegram channels.

RIML Lab from ar


Telegram RIML Lab
FROM USA